
International Journal of Computer Trends and Technology Volume 73 Issue 5, 155-161, May 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I5P119 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Evolution of CI/CD in Cloud-Native Development

Aditya Bhatia

New York University, New York, USA.

 Corresponding Author : aditya.bhatia@nyu.edu

Received: 01 April 2025 Revised: 05 May 2025 Accepted: 17 May 2025 Published: 31 May 2025

Abstract - As the conventional setup for Continuous Integration and Delivery (CI/CD) makes way for an architecture based

on cloud-native principles, the criticality of having scalable, static workflows that are also automated and secure becomes

ever more apparent. With the increasing integration of AI models in the software development lifecycle, GitOps principles

provide critical traceability and reversibility for future CI/CD pipelines. My work in this area has led me to focus on GitOps

and Kubernetes-native CI/CD for modern enterprises. These setups are not yet the de facto standard, but they represent an

evolutionary step forward that increasingly looks to the principles of GitOps for implementing CI/CD in a Kubernetes

landscape. This paper will not only interrogate these principles but also assess key technologies working behind these

principles: Argo CD, Flux, Tekton, and Argo Workflows. It also presents some of the advancements and challenges in the

field and what the future holds.

Keywords - CI/CD, Kubenetes, GitOps, Argo CD/Workflow, Flux, Tekton.

1. Introduction
Continuous Integration (CI) and Continuous

Delivery/Deployment (CD) are practices that automate

building, testing, and releasing software. In the last decade,

a lot has changed in the field. Traditional CI/CD tools (e.g.

Jenkins) originated before containerization and were often

used to run as monolithic services. With the increase in

cloud-native development, which leverages containers,

microservices, and dynamic infrastructure, CI/CD pipelines

must handle container image builds, orchestration, and rapid

deployment to platforms like Kubernetes. Cloud-native

systems demand CI/CD systems that are distributed,

scalable, and integrated with container orchestration. For

example, previous monolithic Jenkins setups used to

become bottlenecks or suffer from “Jenkins sprawl” as

teams tried to scale the system.[2] New approaches are more

scalable with microservices architecture and close

integration with Kubernetes. Platforms like Tekton, which

leverages Kubernetes custom resources to define pipelines,

work well with the everything-as-code approach and

GitOps. [1] Such CI/CD platforms align well with cloud-

native principles for scalability and resilience.

In 2017, Weaveworks introduced GitOps, which

extended the principles of DevOps in cloud-native systems.

Devops focuses on collaboration between development and

operations, with practices like Continuous Integration (CI),

Infrastructure as Code (IaC), Continuous Delivery (CD),

and monitoring. Gitops extended those practices by adding

git-based version control to the above operations. The idea

is to keep git repositories as a single source of truth, which

means changes to the repository made with pull-request or

merge-request should automatically apply to the underlying

infrastructure. To do this, four core principles were defined

by Alexis Richardson (Weaveworks CEO): (1) Declarative

descriptions of the entire system, (2) Git as a Single Source

of Truth Versioned and Immutable state stored in Git, (3)

Kubernetes Operator Approved changes to the desired state

are automatically applied to the system, and (4) Continuous

Observability Software agents ensure correctness and alert

on divergence. In short, Gitops extends the ideas of Iac and

CD and accomplishes them by storing the state in git. Every

change to the infrastructure and deployments is made to the

repository in git, which allows all such changes to be

reviewed as code changes. [2] [3] [4]

Fig. 1 Software Development Life Cycle

Kubernetes has become the standard orchestration

platform for cloud-native applications in the industry. This

has led to a tighter integration of the CI/CD systems with

kubernetes. Traditional CI systems often run outside the

cluster and push changes to the cluster. Although this

approach works, it is less efficient and secure as the jobs

need permission to modify the cluster. Some CI/CD

solutions leverage the kubernetes cluster as an execution

engine by running jobs in the cluster, such as screwdriver

CI/CD. [5] The latest kubernetes native CI/CD systems are

defined using CRD (custom resource definition) and run as

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

156

controllers inside the cluster. This design philosophy also

aligns with GitOps’s definition of everything as code. Using

kubernetes for CI/CD provides scalability. CI/CD pipelines

are defined as code in Git and can deploy swiftly and

securely.

2. GitOps and Kubernetes CI/CD
2.1. GitOps Fundamentals

GitOps is a practice where Git repositories contain

declarative descriptions of infrastructure and applications,

and automated agents continuously ensure the deployed

environment matches the source of truth in repositories. The

following section will discuss some of the fundamental

principles of GitOps.

2.1.1. Git as the Single Source of Truth

All environment definitions (Kubernetes manifests,

Helm charts, etc.) live in Git. Changes are committed to Git,

providing an immutable history of modifications. Every

change can be traced to a commitment to improving

transparency and auditability.

The Git history becomes the log of “who changed what,

when,” in the infrastructure, which makes it very easy to

audit the trail of changes.

2.1.2. Declarative Desired State

A GitOps-managed system emphasizes defining

environments declaratively (desired end state) rather than

imperatively (step-by-step scripts). For Kubernetes, the

desired cluster state (deployments, services, configs) is

expressed in kubernetes YAML manifests.

2.1.3. Automated Reconciliation (Pull Model)

GitOps uses a pull-based deployment model;

kubernetes controllers running in the target environment

continuously pull the latest desired state from Git and

reconcile the actual state to match the state defined in the git

repository.

If the actual state drifts from what is in Git (due to

manual changes or errors), the agent corrects it or alerts on

the divergence to match back to Git changes.

This continuous controller reconciliation loop is key to

drift detection – it ensures that what is running in the cluster

is always what has been declared in Git, eliminating

configuration drift.

2.1.4. Observability & Auditability & Security

Automated reconciliation allows GitOps to limit direct

interaction with production systems, and all changes go

through Git.

This has security benefits: access controls can be

applied to the Git repos and CI process rather than granting

many engineers direct cluster credentials. It also means

security scans and policy checks can be done on the Git-

stored configs before they reach production.

The GitOps agent usually has higher privileges in the

cluster to make changes, so protecting that agent and the git-

repo is critical for security considerations. Signed commits

or trusted pipelines can decrease such concerns and ensure

only authorized changes are applied.

2.1.5. Pull vs Push Deployments

GitOps favors pull-based deployments, where the

cluster (through custom k8s controllers) pulls updates from

Git instead of a CI server pushing changes into the cluster.

Pull-based models are considered more secure and robust in

GitOps since the cluster only needs read access to the repo,

and external systems do not need direct write access to the

cluster. Push-based CI/CD, for example, in systems like

screwdriver CD or gitlab pipelines (where a pipeline script

applies changes to the cluster using kubectl), can still be

used. However, it breaks some GitOps principles by

bypassing the automated state reconciliation in Git k8s,

which can lead to configuration drift.

Fig. 2 CI/CD process evolution with GitOps

3. Tools using GitOps Principals
3.1. Kubernetes-Native Continuous Deployment

This section will explore open-source CD tools running

on Kubernetes using GitOps principles.

3.1.1. Argo CD

A popular CNCF project that originated at Intuit. It is a

declarative GitOps continuous delivery tool for Kubernetes.

Argo CD watches one or more Git repositories and

automatically syncs application definitions to Kubernetes

clusters, which allows users to manage application

deployments using Git repositories as the source of truth. It

automates the deployment of the desired application states

in the specified target environments. It supports deploying

multiple clusters and has built-in role-based access control

(RBAC) for multi-tenant use.

Argo CD focuses on continuous delivery (CD) and

GitOps. It is not a CI engine but integrates with CI pipelines

via webhooks or CLI. It is known for being relatively easy

to use (a simple deployment and a polished UI) and is often

the entry point for teams adopting GitOps. One trade-off is

that Argo CD runs as a central service and is very resource-

heavy; thus, scaling to very large numbers of applications or

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

157

clusters is challenging and may require sharding instances

or using the Argo ApplicationSet controller to manage large

numbers of deployments from a mono-repo and multiple

clusters. [6][7]

3.1.2. Flux

Flux CD (now in its v2 incarnation) is another CNCF

graduated project created initially by Weaveworks. Flux is a

set of Kubernetes controllers (GitRepository, HelmRelease

controllers, etc.) that continuously reconcile cluster state

with what is in Git. Flux has no UI or server; it is a

decentralized, modular architecture with a toolkit of

controllers that can be assembled as needed.

Flux integrates with policy engines and other ecosystem

tools (Helm, Kustomize, SOPS for secrets), making it more

like a platform toolkit. Flux can be run on each cluster

(agents per cluster), which naturally supports multi-cluster

deployments. Flux is embedded in other platforms –

GitLab’s built-in GitOps feature uses Flux under the hood.

[9]. Flux’s design is very Kubernetes-native and flexible; it

continuously auto-syncs cluster state to match Git and can

even auto-promote images, making it powerful for specific

use cases. However, compared to Argo CD, Flux lacks a

native GUI (though third-party dashboards or plugins exist)

and might have a steeper learning curve due to its modular

and extensible nature. [8]

3.1.3. Fleet

Fleet is an open-source GitOps tool from Rancher

(SUSE) aimed at GitOps at scale, specifically managing

multiple clusters. [11] Fleet uses a centralized manager to

deploy workloads to thousands of Kubernetes clusters based

on Git repositories. It introduces the concept of bundling

Kubernetes manifests and applying them to sets of clusters

with placement rules. Fleet’s design is lightweight enough

for a single cluster, but it “really shines” when you have

many clusters or teams to coordinate.

The fleet is fundamentally a set of Kubernetes custom

resource definitions (CRDs) and controllers that manage

GitOps for a single Kubernetes cluster or a large-scale

deployment of Kubernetes clusters. For example, if a

company has 100 Kubernetes clusters, Fleet can deploy a

given application or config to all (or a subset) from one Git

source and monitor the sync status across the fleet.

The trade-off is that Fleet is somewhat newer and more

specialized; it may not have as feature-rich a GUI or

community as Argo or Flux for single-cluster usage. Fleet

fills a niche for large multi-cluster GitOps, emphasizing

control and visibility across distributed clusters. [10]

3.2. Kubernetes-Native CI/CD Workflow Orchestration

Beyond deployment-focused GitOps tools, cloud-

native development also requires CI/CD workflow engines

to build, test, and release software in a Kubernetes-

compatible way. Some key Kubernetes-native CI/CD

orchestration products include Tekton Pipelines, Argo

Workflows, Jenkins X and others. The following section

will explore some of these products in detail.

3.2.1. Tekton Pipelines

Tekton is an open-source framework for creating CI/CD

pipelines as Kubernetes resources. It defines a set of

Kubernetes Custom Resources (CRs) such as Task, Pipeline,

TaskRun, and PipelineRun that act as building blocks to

assemble CI/CD pipelines. Each Tekton Task is a collection

of steps (running in a container), and Pipelines stitch tasks

together. Tekton controllers spin up pods to execute each

step when a pipeline runs. Because Tekton defines

everything in YAML and runs on Kubernetes, it fits the

GitOps declarative and “pipeline as code” paradigms. Due

to the high flexibility in defining pipelines using custom

resources, it allows highly customizable pipelines for build,

testing, and deployment.

The pipeline CRs are version-controlled in Git, along

with application code and k8s deployment manifests. As

Tekton pipeline configs are kubernetes objects, when

accompanied by Gitops workflows like Argo and Flux,

Tekton controllers in k8s also manage the pipelines. [12]

3.2.2. Argo Workflows

Argo Workflows is a container-native workflow engine

for Kubernetes. With Argo, multi-step workflows can be

defined (including DAGs – Directed Acyclic Graphs of

tasks) as Kubernetes Custom Resource Definitions (CRDs).

Each step in an Argo Workflow is a containerized operation,

and Argo’s controller schedules these steps on the cluster,

handling dependencies and parallelism. Mainly, Argo

Workflows are used to build pipelines for use cases like

machine learning workflows, data processing, and batch

jobs.

Argo workflows can be used to build CI job pipelines

to run tasks in kubernetes. Argo Workflows has features like

a web UI to visualize workflow DAGs, artefact passing

between steps, retries, and an extensive library of examples.

Argo Workflows tends to be more user-friendly for complex

workflows, especially with its visualization and easier DAG

definition. For CI/CD specifically, Argo Workflows can

integrate with Argo Events (to trigger workflows on Git or

registry events) and Argo CD (for deployment steps),

creating a full GitOps pipeline with a UI. [13]

3.2.3. Jenkins X

Jenkins X is an open-source CI/CD platform that began

as an extension of Jenkins for cloud-native apps. However,

it evolved into a distinct solution built around Kubernetes.

Jenkins X v3+ leverages Tekton for running pipelines and

focuses on GitOps for managing environments. Jenkins X

automates the creation of CI/CD pipelines, manages the

promotion of applications between environments via

GitOps, and provides developer-friendly tooling. Although

Jenkins X has opinions around the best practices around

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

158

CI/CD, for example, defining code structure in a specific

way in the git repository can automatically set up build and

deployment pipelines and handle deployments through

GitOps without manually defining the pipelines. Jenkins X

leverages Tekton for pipeline execution on kubernetes and

Flux for manifest deployment. With its moderate complexity

of usage, setting up Jenkins X can be a complex task because

of multiple components that act as dependencies. [14]

3.2.4. Others

Other Workflow tools like Spinnaker are not

Kubernetes’ native tools. These tools do not really use Git

as the source of truth regarding reconciling with the cluster.

Tools like Screwdriver CD have patterns like gitlab CI and

Github Actions. Such tools are based on the pipelines and

git webhooks defined either in UI or a manifest yaml file in

the repository. There are also tools like Concourse CI that

use containers for tasks, but not specifically Kubernetes

CRDs. Cloud-specific solutions like GitLab CI or GitHub

Actions integrate with K8s via runners/operators. All these

tools are outside strict “Kubernetes-native” classification

and use a push model rather than a pull model seen in other

tools like Argo and Tekton Pipelines.

4. Advancements in CI/CD Architectures

Many advancements in CI/CD architectures and

innovations have improved automation and scalability in

recent years. In the next section, I will discuss some of the

areas of these advancements in more detail.

4.1. Event-Driven and Declarative Pipelines

Event-driven CI/CD pipelines are the new normal,

which means the pipelines get automatically triggered for

events such as code pushes, new container images, or other

system events without manual intervention. Kubernetes’

event-driven approach allows for the declarative definition

of such pipelines using Kubernetes Custom Resources

(CRs). For instance, in Tekton pipelines, a Tekton Triggers

component allows pipelines to start based on external events

(e.g., a GitHub webhook or a message on a broker). For

example, a push to a git-repo can send a webhook that

Tekton Triggers catches, creating a custom resource

PipelineRun to build and deploy the new commit. Similarly,

Argo Events is a dedicated event-driven workflow

automation framework in the Argo ecosystem. It can listen

for triggers such as webhooks, cron schedules, message

queues, etc., and then kick off Argo Workflows (or other

actions) in response. Like Tekton Triggers, Argo Events

runs in the cluster and is configured declaratively (with

sensor and trigger CRDs). This allows the building of

sophisticated declarative event-driven CI/CD systems. For

instance, an Argo Events can detect when a new Docker

image is published to a registry and then launch a test

workflow, or when a pull request is merged, it can start a

deployment workflow. With this approach, pipeline trigger

logic moves into the k8s cluster defined by Custom

Resources (CRs), version controlled, rather than being

defined in a CI service’s proprietary config.

With this approach, pipeline trigger logic moves into

the k8s cluster defined by Custom Resources (CRs), version

controlled, rather than being defined in a CI service’s

proprietary config. Along with that, an event-driven

approach leads to decoupled and responsive pipelines.

Instead of a periodic poll or manual trigger, pipelines run

exactly when needed, making the whole system much more

scalable. Declaratively defining these triggers means they

are versioned and reproducible like the rest of the system

config.

The goal is to treat CI/CD not as a static sequence but

as a set of reactive workflows that continuously respond to

code, configuration, or environment changes.

4.2. Multi-Cluster and Hybrid Cloud Delivery

With the increase in building scalable and failure-

resistant software, a common practice is to deliver software

to multiple kubernetes clusters, sometimes across different

cloud providers or on hybrid (cloud/on-prem). Also,

achieving cloud provider agnostic CI/CD means that the

pipeline and GitOps process should not be tightly coupled to

any cloud provider’s services. To achieve this, a common

strategy is to use universal tools that can run CI/CD over

Kubernetes, such as Tekton pipelines for CI and Argo CD

for CD. Such a strategy provides GitOps at scale without

being dependent on any cloud provider. Another strategy is

to build infrastructure as code (IaC) by defining cloud

resources (networks, clusters, etc.) with tools like Terraform

or Crossplane. Crossplane extends multi-cloud GitOps

declarative pattern by defining the cloud resources using

kubernetes CRDs stored in the Git repository. IaC ensures

that the provisioning and configuration of cloud services are

automated and versioned, supporting GitOps for application

infrastructure.

One of the approaches to handle multi-cluster

configuration with gitOps is to use multiple repository

patterns. A single bootstrap repository is created, holding the

configuration of different clusters. Such a repository is

reconciled on a manager/bootstrap k8s cluster using tools

like Flux and Crossplane to spawn new workload clusters or

update existing clusters. Once a workload cluster is created,

multiple application repositories are on-boarded by storing

the application configuration in a separate operational

repository, mapping the application repositories to multiple

clusters. In such a way, changes in the application repository

trigger reconciles in multiple clusters to deploy the latest

changes to the cluster.

In summary, Kubernetes-native CI/CD tools and

GitOps workflows provide the functionality for continuous

deployments in any environment. By strategically laying out

the git repositories, leveraging infrastructure-as-code, and

using the gitOps tools described above, multi-cluster and

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

159

hybrid cloud delivery pipelines can be operationalized and

maintained.

4.3. Securing CI/CD

With enhanced automation achieved by using GitOps,

advancements in security policy and secret management of

the cluster are necessary. Tools like (Open Policy Agent)

OPA (oh-pa), and Kyverno are cloud-native policy engines

that allow different policies needed in the cluster to be

defined declaratively as Code. The policy controllers run

continuously, intercepting changes in the cluster. These

policy definitions can implement GitOps by adding another

“control loop” layer over the GitOps reconciliation loop in

which the GitOps operator reconciles the Git state to the

cluster state. Once the Policy stored in the git repository is

reconciled in the cluster, the policy controller watches the

policy states, dynamically enforces the required policies,

and manages configurations.

The automation provided by gitpops based on the code

in the repository brings security to the git repository access

policy. The automation minimizes manual access to

production clusters, but a compromised repository with a

weak access policy can impact multiple clusters. Some of

the practices which can increase the security with GitOps

principles are:

4.4. Securing Git Repository

As Git becomes the source of truth, it is very critical to

restrict changes to the GitOps repository without proper

authorization and validation to ensure consistency, security,

and compliance across the deployment pipeline. Some of the

common patterns are managing deployment branches

separately, disabling changes to protected branches, using

mandatory pull requests to enforce code review processes,

and maintaining a clear separation of concerns in the

deployment workflow.

4.5. Secret Management

Managing secrets outside of the git repository via

encrypted stores or Kubernetes secret operators (like

Mozilla SOPS integration with key management systems

like AWS KMS, GCP KMS, Azure Key Vault or Hashicorp

Vault) can improve security, maintainability, and

compliance by ensuring that sensitive information is not

exposed.

4.6. Least Privilege Access

The GitOps controllers (Argo CD, Flux) should be run

with the minimum necessary permissions. Due to

heightened control by GitOps agents running in the cluster,

a compromised GitOps control plane could affect the entire

cluster or even multiple clusters simultaneously. So,

isolating the controller access, for example, limiting the

access for a project to a specific namespace or API groups

and using tools like network policies and strong

authentication for web UIs/CLIs, is critical.

4.7. Audit Logs

Everything in Git gives a nice audit trail by default.

Teams should leverage this by linking commits to change

management or ticketing systems and regularly reviewing

the Git history for unexpected changes. Leveraging signed

commits and automatic pull-request labelling when

changing access control policies can help audit security

gaps. Some tools, like OpsMx ISD as an add-on for Argo

CD, provide an audit log on what was deployed, when, and

by whom.

5. Challenges and Future Direction
As CI/CD and GitOps practices become a critical

components in cloud-native development, several

challenges are still present and future directions that the

industry is taking.

5.1. Standardization of Pipeline Definitions

A unified standard for defining pipelines is lacking with

multiple CI/CD frameworks (Gitlab CI, Tekton, Argo

Workflows, Jenkins pipelines, GitHub Actions).

Interoperability becomes a huge challenge when changing

the underlying CI/CD solution. For example, a pipeline

defined for Gitlab CI must be rewritten to run on Argo and

vice versa. Initiatives like the CD Foundation’s CDEvents

[15] are getting more traction, working on standardizing the

events in CI/CD (so tools can interoperate on triggers and

results). Tekton’s CRDs could also serve as the lowest

common denominator (since it was born with

standardization in mind). It is not trivial to map all features

between systems.

This is like how, in the past, Docker Compose,

Kubernetes YAML, and CloudFormation all described

deployments differently – eventually, Kubernetes YAML

became a de facto standard for container orchestration. The

current challenge is getting broad adoption without slowing

down innovation. In the future, something like the Open

Pipeline Format might become the standard for defining the

workflow that any CI/CD engine can execute. This would

significantly enhance tool interoperability and reduce

switching costs.

5.2. Observability and Traceability of Pipelines

As pipelines become more complex and spread across

multiple systems (CI engines, CD controllers, etc.),

observing them end-to-end is quite challenging. Developers

need to identify where a failure occurred quickly, and with

the setup of multiple systems, developers might have to

check logs in different systems. This leads to the effort of a

unified pipeline observability, which includes some of the

improvements like

5.3. User Experience Improvements

Giving a unified user experience is critical for

developers to find which steps in the workflow failed and

the ability to scan through the logs to find the reasons for the

failure. Also, features like a “rerun” pipeline or “dry-run”

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

160

are helpful in case of failures. Mitigation or better diff and

approval mechanisms can provide observability into what

changes and when.

5.4. Pipeline Analytics

Gathering metrics on pipelines (success rates,

durations, frequency) and analyzing trends is valuable for

engineering productivity. Currently, the platforms do not

provide analytics off the shelf. Future CI/CD platforms will

likely have more built-in analytics dashboards, possibly

automatically feeding into engineering DORA metrics

tracking. For instance, tracking Deployment Frequency and

Change Failure Rate could be automated by the GitOps CD

tool and easily visualized by the Grafana dashboard. This

will give engineering teams continuous feedback on their

performance.

5.5. Pipeline Tracing

In the current CI/CD platforms, there is no easy way to

see and analyze the flow of change from commit to

production. Tracing CI/CD with OpenTelemetry (OTEL)

adds traces to various steps in the pipeline, providing

visibility across the entire pipeline execution by

instrumenting and monitoring each pipeline step.

5.6. Integration of AI for automation

In recent years, with the advancement of various AI

models, AI has been leveraged to automate parts of DevOps

that require human intervention. Some of how AI is being

used are discussed below.

5.6.1. Infrastructure Workload Forecasting

Some time-series forecasting models (such as ARIMA)

are being used to forecast the workload in the infrastructure.

[15] In such a case, the model prediction is integrated with

CI pipelines and using GitOps, and the infrastructure can be

updated without any manual intervention. Essentially, the

system “learns” that traffic will spike and, ahead of time,

commits a change to accommodate it – the GitOps pipeline

then deploys this change automatically. This mix of AI (for

prediction) and GitOps (for execution) can significantly

reduce manual operational intervention and improve

resilience. [16]

5.6.2. Anomaly Detection, Auto-Remediation and Pipeline

Optimization

AI models could automatically detect anomalies in

build/test logs or deployment metrics. For example, an ML

model might learn the pattern of a typical deployment and

flag if a deployment’s log or performance profile looks

unusual. The pipeline could then pause for human review.

Based on anomaly detection, AI could trigger automatic

remediation if a deployment or infrastructure change causes

a problem. A simple form is already present (rollbacks on

failed health checks). However, more advanced AI could try

to pinpoint the component causing failure (maybe using

knowledge of recent changes) and rectify it (for instance, by

scaling up resources or clearing a stuck job). Machine

learning can also be used to analyze historical data of

multiple pipeline runs and code changes to suggest

optimizations to pipeline runs (like test selection or caching

strategies), which can improve the performance of the

pipelines, for example, by only selecting tests based on the

code changes.

6. Conclusion
Continuous Integration and Delivery in the cloud-native

era has undergone a significant evolution. What began as a

set of scripts and CI servers has transformed into declarative,

Git-centered workflows operating in and alongside

Kubernetes. GitOps has emerged as a key paradigm,

enabling operations to be treated as code: deployments are

reproducible, auditable, and self-correcting via automated

reconciliation.

With the integration of AI in development tasks and the

usage of Git as the source of truth for infrastructure and

application state, teams achieve unprecedented transparency

and control. Every change is traceable and reversible, which

boosts confidence in making frequent changes. This directly

contributes to improved developer velocity (deploy faster,

with fewer fears) and reliability (less model drift, easier

rollback).

CI/CD systems are now built as cloud-native

applications themselves. This ensures they are portable,

modular, and can scale horizontally. Kubernetes-native

pipelines like Tekton and Argo Workflows have reimagined

CI/CD, running natively on the same platform as

applications and thus offering scalability and consistency

that traditional external systems struggled to provide.

GitOps and Kubernetes-native CI/CD introduce their

complexities. Teams need to learn Kubernetes and Git

intricacies, manage new kinds of resources (CRDs for

pipelines, etc.), and handle the cognitive load of distributed

systems.

However, the trend is towards unification and

simplification through internal developer platforms or

tighter integrations between projects. The ecosystem

converges on patterns that work at scale, as evidenced by the

shared learnings in research and conferences. Such open

unified formats, potentially becoming Open Pipeline format,

would simplify pipeline interoperability across fragmented

CI/CD solutions to a great extent. Leveraging GPT models

to do such transformations is also a great start.

In conclusion, the evolution of CI/CD toward GitOps

and Kubernetes-native workflows is a positive feedback

loop: as more organizations adopt these practices, tools

improve, making adoption easier.

Aditya Bhatia / IJCTT, 73(5), 155-161, 2025

161

Acknowledgements
I want to express gratitude to the team of Argo CD,

Tekton, Flux CD, Jenkins, Screwdriver CD, and Rancher for

providing detailed documentation, which was used

extensively to write this paper.

References
[1] Florian Beetz, and Simon Harrer, “GitOps: The Evolution of DevOps?,” IEEE Software, vol. 39, no. 4, pp. 70-75, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[2] Tekton vs. Jenkins: What's Better for CI/CD Pipelines on Red Hat OpenShift? Martin Sumner, 2023. [Online]. Available:

https://www.redhat.com/en/blog/tekton-vs-jenkins-whats-better-cicd-pipelines-red-hat-openshift

[3] Yann Albou, and Sébastien Féré, GitOps and the Millefeuille Dilemma, 2020. [Online]. Available:

https://www.sokube.io/en/blog/gitops-and-the-millefeuille-dilemma-en

[4] GitOps Principles. [Online]. Available: https://github.com/open-gitops/documents/blob/main/PRINCIPLES.md

[5] Screwdriver CI/CD. [Online]. Available: https://screwdriver.cd/

[6] Argo CD Docs. [Online]. Available: https://argo-cd.readthedocs.io/

[7] Argo CD vs Tekton vs Jenkins X: Finding the Right GitOps Tooling. [Online]. Available: https://platform9.com/blog/argo-cd-vs-

tekton-vs-jenkins-x-finding-the-right-gitops-tooling/

[8] Flux CD Documentation. [Online]. Available: https://fluxcd.io/flux/concepts/

[9] GitOps with GitLab: What you need to know about the Flux CD Integration. [Online]. Available:

https://about.gitlab.com/blog/2023/02/08/why-did-we-choose-to-integrate-fluxcd-with-gitlab/

[10] Fleet Github Repo. [Online]. Available: https://github.com/rancher/fleet

[11] Rancher Documentation. [Online]. Available: https://www.rancher.com/

[12] Tekton Documentation. [Online]. Available: https://tekton.dev/docs/

[13] Argo Workflows Documentation. [Online]. Available: https://argo-workflows.readthedocs.io/en/latest/

[14] Jenkins X. [Online]. Available: https://jenkins-x.io/

[15] CDEvents WhitePaper. [Online]. Available: https://cdevents.dev/docs/wpaper/

[16] Bohdan Fedoryshyn, and Olena Krasko, “Migration of Services in a Kubernetes Cluster Based on Workload Forecasting,” Information

and Communication Technologies, Electronic Engineering, vol. 4, no. 2, pp. 82-92, 2024. [CrossRef] [Publisher Link]

https://doi.org/10.1109/MS.2021.3119106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GitOps%3A+The+Evolution+of+DevOps%3F&btnG=
https://ieeexplore.ieee.org/abstract/document/9565152
https://doi.org/10.23939/ictee2024.02.082
https://science.lpnu.ua/ictee/all-volumes-and-issues/volume-4-number-2-2024/migration-services-kubernetes-cluster-based
https://science.lpnu.ua/ictee/all-volumes-and-issues/volume-4-number-2-2024/migration-services-kubernetes-cluster-based

